Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Safety and Health at Work ; : 34-38, 2011.
Article in English | WPRIM | ID: wpr-169141

ABSTRACT

OBJECTIVES: The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the environment and human health. METHODS: Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micronuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of 0.7 x 10(6) particles/cm3 (low dose), 1.4 x 10(6) particles/cm3 (middle dose), and 2.9 x 10(6) particles/cm3 (high dose) for 6 hr/day in an inhalation chamber for 90 days. The rats were killed 24 hr after the last administration, then the femurs were removed and the bone marrow collected and evaluated for micronucleus induction. RESULTS: There were no statistically significant differences in the micronucleated polychromatic erythrocytes or in the ratio of polychromatic erythrocytes among the total erythrocytes after silver nanoparticle exposure when compared with the control. CONCLUSION: The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic toxicity in male and female rat bone marrow in vivo.


Subject(s)
Animals , Female , Humans , Male , Rats , Bone Marrow , Erythrocytes , Femur , Inhalation , Inhalation Exposure , Mutagenicity Tests , Nanoparticles , Rats, Sprague-Dawley , Silver
2.
Safety and Health at Work ; : 192-200, 2010.
Article in English | WPRIM | ID: wpr-177403

ABSTRACT

OBJECTIVES: We have investigated the toxic effects of the inhalation of subchronic and acute levels of n-octane. METHODS: The rats were exposed to n-octane of 0, 2.34, 11.68 and 23.36 mg/L (n = 5 rats/group/gender) in an acute inhalation test (Organization for Economic Co-operation and Development (OECD) TG 403), or to 0, 0.93, 2.62 and 7.48 mg/L (n = 10 rats/group/gender) for a subchronic inhalation test (OECE TG 413), to establish a national chemical management system consistent with the Globally Harmonized Classification System (GHS). RESULTS: Acutely-exposed rats became lethargic but recovered following discontinuation of inhalation. Other clinical symptoms such as change of body weight and autopsy finds were absent. The LC50 for the acute inhalation toxicity of n-octane was determined to exceed 23.36 mg/L and the GHS category was 'not grouping'. Subchronically-treated rats displayed no significant clinical and histopathological differences from untreated controls; also, target organs were affected hematologically, biochemically and pathologically. Therefore, the no observable adverse effect level was indicated as exceeding 7.48 mg/L and the GHS category was 'not grouping' for the specific target organ toxicity upon repeated exposure. CONCLUSION: However, n-octane exposure should be controlled to be below the American Conference of Industrial Hygienists recommendation (300 ppm) to prevent inhalation-related adverse health effects of workers.


Subject(s)
Animals , Rats , Autopsy , Body Weight , Inhalation , Octanes
SELECTION OF CITATIONS
SEARCH DETAIL